
DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 1

(A0510194) DESIGN AND ANALYSIS OF ALGORITHMS

UNIT V

UNIT-V:

Backtracking: General method, applications-n-queen problem, sum of subsets

problem, graph coloring, Hamiltonian cycles.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 2

Backtracking:

In the search for fundamental principles of algorithm design, backtracking

represents one of the most general techniques. Many problems which deal with

searching for a set of solutions or which ask for an optimal solution satisfying

some constraints can be solved using the backtracking formulation.

In order to apply the backtrack method, the desired solution must be expressible

as an n-tuple (xi, ... , xn) where the x1 are chosen from some finite set S1

The problem to be solved calls for finding one vector which maximizes (or

minimizes or satisfies) a criterion function P(xi, ... ,xn).

Example:

Sorting the integers in A(l:n) is a problem whose solution is expressible by an n-

tuple where x; is the index in A of the ith smallest element.

“The criterion function Pi the inequality A(xi) ≤ A(xi+1) for 1≤i<n”

Many of the problems we solve using backtracking require that all the solutions

satisfy a complex set of constraints. For any problem these constraints can be

divided into two categories:

1. explicit

2. implicit

Explicit constraints are rules that restrict each xi to take on values only from a

given set.

Eg:

1. xi > 0 or Si = {all non-negative real numbers}

2. xi = 0 or 1 or Si = {0,1}

3. li < xi < ui or Si = {a: li < a < ui }

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 3

The explicit constraints depend on the particular instance I of the problem being

solved. All tuples that satisfy the explicit constraints define a possible solution

space for I.

Implicit constraints are rules that determine which of the tuples in the solution

space of I satisfy the criterion function. Thus implicit constraints describe the

way in which the xi must relate to each other.

o Implicit constraint: It is a rule in which how each element in a tuple is

related.

o Explicit constraint: The rules that restrict each element to be chosen

from the given set.

Let (x1, x2, x3, …, xi) be a path from the root to a node in a state space tree. Let

T(x1, x2, x3, …, xi) be the set of all possible values for xi+1 such that (x1, x2, x3, …,

xi+1) is also a path to a problem state.

Let the bounding function Bi+1 such that if Bi+1(x1, x2, x3, …, xi+1) is false for a

path(x1, x2, x3, …, xi+1) from the root node to a problem state, then the path

cannot be extended to reach an answer node.

Backtracking is one of the techniques that can be used to solve the problem. We

can write the algorithm using this strategy. It uses the Brute force search to solve

the problem, and the brute force search says that for the given problem, we try

to make all the possible solutions and pick out the best solution from all the

desired solutions. This rule is also followed in dynamic programming, but

dynamic programming is used for solving optimization problems. In contrast,

backtracking is not used in solving optimization problems. Backtracking is used

when we have multiple solutions, and we require all those solutions.

Backtracking name itself suggests that we are going back and coming forward;

if it satisfies the condition, then return success, else we go back again. It is used

to solve a problem in which a sequence of objects is chosen from a specified set

so that the sequence satisfies some criteria.

Backtracking is a systematic method of trying out various sequences of decisions until you

find out that works. Let's understand through an example.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 4

We start with a start node. First, we move to node A. Since it is not a feasible solution so

we move to the next node, i.e., B. B is also not a feasible solution, and it is a dead-end so

we backtrack from node B to node A.

Suppose another path exists from node A to node C. So, we move from node A to node

C. It is also a dead-end, so again backtrack from node C to node A. We move from node

A to the starting node.

Now we will check any other path exists from the starting node. So, we move from start

node to the node D. Since it is not a feasible solution so we move from node D to node

E. The node E is also not a feasible solution. It is a dead end so we backtrack from node E

to node D.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 5

Suppose another path exists from node D to node F. So, we move from node D to node

F. Since it is not a feasible solution and it's a dead-end, we check for another path from

node F.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 6

Suppose there is another path exists from the node F to node G so move from node F to

node G. The node G is a success node.

Recursive Backtracking algorithm:

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 7

Iterative Backtracking algorithm:

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 8

8-Queen’s Problem:

➢ The eight queens problem is the problem of placing eight queens on an

8×8 chessboard such that none of them attack one another (no two are in

the same row, column, or diagonal)

➢ We use a backtracking algorithm to find a solution to the 8 Queen problem,

which consists of placing 8 queens on a chessboard in such a way that no

two queens threaten each other.

➢ The algorithm starts by placing a queen on the first column, then it

proceeds to the next column and places a queen in the first safe row of

that column.

➢ If the algorithm reaches the 8th column and all queens are placed in a safe

position, it prints the board and returns true.

➢ If the algorithm is unable to place a queen in a safe position in a certain

column, it backtracks to the previous column and tries a different row.

N-Queen’s problem:

Consider an n X n chess board and try to find all the ways to place n non-

attacking queens.

Let (x1, x2, x3, …, xn) represent a solution in which xi is the column of the ith row

where the ith queen is placed. The xi’s will all be distinct since no two queens can

be placed in the same column.

If we imagine the chess board squares being numbered as the indices of the two-

dimensional array a[1:n, 1:n], then we observe that every element on the same

diagonal that runs from the upper left to the lower right has the same row -

column value. Also, every element on the same diagonal that goes from the upper

right to lower left has the same row + column value.

Suppose two queens are placed at positions (i,j) and (k,l). Then they are on the

same diagonal only if

i – j = k – l or i + j = k + l

 j – l = i – k or  j – l = k – i

Therefore, two queens lie on the same diagonal if and only if |j – l| = |i – k|.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 9

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 10

Sum of Subsets Problem:

Suppose we are given n distinct positive numbers and we desire to find all

combinations of these numbers whose sums are m. This is called the sum of

subsets problem.

Let n = 6, m = 30, and w[1 : 6] = {5,10,12,13,15,18}.

The solutions are:

1. (1, 1, 0, 0, 1, 0)

2. (1, 0, 1, 1, 0, 0)

3. (0, 0, 1, 0, 0, 1)

A simple choice for the bounding functions is B({x1,x2,...,xk) = true iff

Clearly xi,...,xk cannot lead to an answer node if this condition is not satisfied.

The bounding functions can be strengthened if we assume the wi's are initially

in non-decreasing order. In this case xi,...,xk cannot lead to an answer node if

Therefore, the bounding functions we use are

Algorithm SumOfSub uses two variables s and r to store the values of

respectively.

The algorithm assumes w1 ≤ m and

The initial call is SumOfSub (0, 1,)

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 11

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 12

Graph Coloring problem:

Let G be a graph and m be a given positive integer. We want to discover whether

the nodes of G can be colored in such a way that no two adjacent nodes have the

same color yet only m colors are used. This is called as m-colorability

decision problem.

If d is the degree of the given graph, then it can be colored with d + 1 colors.

The m-colorability optimization problem asks for the smallest integer m for which

the graph G can be colored. This integer is referred to as the chromatic number

of the graph.

A graph is said to be planar if and only if it can be drawn in a plane in such a

way that no two edges cross each other.

A famous special case of the m-colorability decision problem is the 4-color

problem for planar graphs. The problem is: Given any map, can the regions be

colored in such a way that no two adjacent regions have the same color yet only

four colors are needed.

Since a map can easily be transformed into a graph. Each region of the map

becomes a node, and if two regions are adjacent, then the corresponding nodes

are joined by an edge.

A map and its planar graph representation are shown below:

Function mColoring is begun by first assigning the graph to its adjacency matrix,

setting the array x[] to zero, and then invoking the statement mColoring(1).

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 13

Finding all m-colorings of a graph:

Generating a next color:

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 14

State space tree for mColoring when n =3 and m = 3.

A 4-node graph and all possible 3-colorings

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 15

Hamiltonian Cycles:

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle is a

round-trip path along n edges of G that visits every vertex once and returns to

its starting position.

Graph G1 contains a Hamiltonian cycle 1, 2, 8, 7, 6, 5, 4, 3, 1.

Graph G2 does not contain any Hamiltonian cycle.

The backtracking solution vector (x1, x2… xn) is defined so that xi represents the

ith visited vertex of the proposed cycle.

Generating a next vertex:

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 16

Finding all Hamiltonian cycles:

This algorithm is started by first initializing the adjacency matrix G[l:n, 1:n], then

setting x[2:n] to zero and x[l]to 1, and then executing Hamiltonian (2).

