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UNIT-V: 

Backtracking: General method, applications-n-queen problem, sum of subsets 

problem, graph coloring, Hamiltonian cycles. 
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Backtracking: 

 

In the search for fundamental principles of algorithm design, backtracking 

represents one of the most general techniques. Many problems which deal with 

searching for a set of solutions or which ask for an optimal solution satisfying 

some constraints can be solved using the backtracking formulation. 

 

In order to apply the backtrack method, the desired solution must be expressible 

as an n-tuple (xi, ... , xn) where the x1 are chosen from some finite set S1 

 

The problem to be solved calls for finding one vector which maximizes (or 

minimizes or satisfies) a criterion function P(xi, ... ,xn). 

 

Example:  

Sorting the integers in A(l:n) is a problem whose solution is expressible by an n-

tuple where x; is the index in A of the ith smallest element.  

 

“The criterion function Pi the inequality A(xi) ≤ A(xi+1) for 1≤i<n” 

 

 
Many of the problems we solve using backtracking require that all the solutions 

satisfy a complex set of constraints. For any problem these constraints can be 

divided into two categories:  

 

1. explicit  

2. implicit 

 

Explicit constraints are rules that restrict each xi to take on values only from a 

given set. 

Eg:  

1. xi  > 0  or  Si = {all non-negative real numbers} 

2. xi = 0 or 1  or  Si = {0,1} 

3. li < xi < ui  or  Si = {a: li < a < ui } 
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The explicit constraints depend on the particular instance I of the problem being 

solved. All tuples that satisfy the explicit constraints define a possible solution 

space for I. 

 

Implicit constraints are rules that determine which of the tuples in the solution 

space of I satisfy the criterion function. Thus implicit constraints describe the 

way in which the xi must relate to each other. 

 

o Implicit constraint: It is a rule in which how each element in a tuple is 

related. 

o Explicit constraint: The rules that restrict each element to be chosen 

from the given set. 

Let (x1, x2, x3, …, xi) be a path from the root to a node in a state space tree. Let 

T(x1, x2, x3, …, xi) be the set of all possible values for xi+1 such that (x1, x2, x3, …, 

xi+1) is also a path to a problem state.  

 

Let the bounding function Bi+1 such that if Bi+1(x1, x2, x3, …, xi+1)   is false for a 

path(x1, x2, x3, …, xi+1) from the root node to a problem state, then the path 

cannot be extended to reach an answer node. 

 

Backtracking is one of the techniques that can be used to solve the problem. We 

can write the algorithm using this strategy. It uses the Brute force search to solve 

the problem, and the brute force search says that for the given problem, we try 

to make all the possible solutions and pick out the best solution from all the 

desired solutions. This rule is also followed in dynamic programming, but 

dynamic programming is used for solving optimization problems. In contrast, 

backtracking is not used in solving optimization problems. Backtracking is used 

when we have multiple solutions, and we require all those solutions. 

 

Backtracking name itself suggests that we are going back and coming forward; 

if it satisfies the condition, then return success, else we go back again. It is used 

to solve a problem in which a sequence of objects is chosen from a specified set 

so that the sequence satisfies some criteria. 

 

Backtracking is a systematic method of trying out various sequences of decisions until you 

find out that works. Let's understand through an example. 



DESIGN AND ANALYSIS OF ALGORITHMS 
 

Prepared by: Dr. K Rajendra Prasad, IARE, Hyderabad Page 4 

 

We start with a start node. First, we move to node A. Since it is not a feasible solution so 

we move to the next node, i.e., B. B is also not a feasible solution, and it is a dead-end so 

we backtrack from node B to node A. 

 

Suppose another path exists from node A to node C. So, we move from node A to node 

C. It is also a dead-end, so again backtrack from node C to node A. We move from node 

A to the starting node. 

 

Now we will check any other path exists from the starting node. So, we move from start 

node to the node D. Since it is not a feasible solution so we move from node D to node 

E. The node E is also not a feasible solution. It is a dead end so we backtrack from node E 

to node D. 
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Suppose another path exists from node D to node F. So, we move from node D to node 

F. Since it is not a feasible solution and it's a dead-end, we check for another path from 

node F. 
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Suppose there is another path exists from the node F to node G so move from node F to 

node G. The node G is a success node. 

 
 

Recursive Backtracking algorithm: 
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Iterative Backtracking algorithm: 
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8-Queen’s Problem: 

➢ The eight queens problem is the problem of placing eight queens on an 

8×8 chessboard such that none of them attack one another (no two are in 

the same row, column, or diagonal) 

 

➢ We use a backtracking algorithm to find a solution to the 8 Queen problem, 

which consists of placing 8 queens on a chessboard in such a way that no 

two queens threaten each other. 

 

➢ The algorithm starts by placing a queen on the first column, then it 

proceeds to the next column and places a queen in the first safe row of 

that column. 

 

➢ If the algorithm reaches the 8th column and all queens are placed in a safe 

position, it prints the board and returns true. 

 

➢ If the algorithm is unable to place a queen in a safe position in a certain 

column, it backtracks to the previous column and tries a different row. 

 

N-Queen’s problem: 

 

Consider an n X n chess board and try to find all the ways to place n non-

attacking queens. 

 

Let (x1, x2, x3, …, xn) represent a solution in which xi is the column of the ith row 

where the ith queen is placed. The xi’s will all be distinct since no two queens can 

be placed in the same column. 

 

If we imagine the chess board squares being numbered as the indices of the two-

dimensional array a[1:n, 1:n], then we observe that every element on the same 

diagonal that runs from the upper left to the lower right has the same row - 

column value. Also, every element on the same diagonal that goes from the upper 

right to lower left has the same row + column value. 

 

Suppose two queens are placed at positions (i,j) and (k,l). Then they are on the 

same diagonal only if  

i – j = k – l  or   i + j = k + l 

      j – l = i – k  or   j – l = k – i 

Therefore, two queens lie on the same diagonal if and only if |j – l| = |i – k|. 
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Sum of Subsets Problem: 

 

Suppose we are given n distinct positive numbers and we desire to find all 

combinations of these numbers whose sums are m. This is called the sum of 

subsets problem.  

 

Let n = 6, m = 30, and w[1 : 6] = {5,10,12,13,15,18}. 

The solutions are: 

1. (1, 1, 0, 0, 1, 0) 

2. (1, 0, 1, 1, 0, 0)  

3. (0, 0, 1, 0, 0, 1) 

 

A simple choice for the bounding functions is B({x1,x2,...,xk) = true iff 

 
Clearly xi,...,xk cannot lead to an answer node if this condition is not satisfied. 

The bounding functions can be strengthened if we assume the wi's are initially 

in non-decreasing order. In this case xi,...,xk  cannot lead to an answer node if 

 
Therefore, the bounding functions we use are  

 
 

Algorithm SumOfSub uses two variables s and r to store the values of 

respectively. 

 

 

 

The algorithm assumes w1 ≤ m and  

 

 

The initial call is SumOfSub (0, 1,             ) 
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Graph Coloring problem: 

 

Let G be a graph and m be a given positive integer. We want to discover whether 

the nodes of G can be colored in such a way that no two adjacent nodes have the 

same color yet only m colors are used. This is called as           m-colorability 

decision problem.  

 

If d is the degree of the given graph, then it can be colored with d + 1 colors.  

 

The m-colorability optimization problem asks for the smallest integer m for which 

the graph G can be colored. This integer is referred to as the chromatic number 

of the graph. 

 

A graph is said to be planar if and only if it can be drawn in a plane in such a 

way that no two edges cross each other.  

 

A famous special case of the m-colorability decision problem is the 4-color 

problem for planar graphs. The problem is: Given any map, can the regions be 

colored in such a way that no two adjacent regions have the same color yet only 

four colors are needed. 

 

Since a map can easily be transformed into a graph. Each region of the map 

becomes a node, and if two regions are adjacent, then the corresponding nodes 

are joined by an edge. 

 

A map and its planar graph representation are shown below: 

 

 
Function mColoring is begun by first assigning the graph to its adjacency matrix, 

setting the array x[ ] to zero, and then invoking the statement mColoring(1). 
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Finding all m-colorings of a graph: 

 

 
 

Generating a next color: 
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State space tree for mColoring when n =3 and m = 3. 

 
 

A 4-node graph and all possible 3-colorings 
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Hamiltonian Cycles: 

 

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle is a 

round-trip path along n edges of G that visits every vertex once and returns to 

its starting position.  

 

 
Graph G1 contains a Hamiltonian cycle 1, 2, 8, 7, 6, 5, 4, 3, 1. 

Graph G2 does not contain any Hamiltonian cycle. 

 

The backtracking solution vector (x1, x2… xn) is defined so that xi represents the 

ith visited vertex of the proposed cycle. 

 

Generating a next vertex: 
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Finding all Hamiltonian cycles: 

 

 
 

This algorithm is started by first initializing the adjacency matrix G[l:n, 1:n], then 

setting x[2:n] to zero and x[l]to 1, and then executing Hamiltonian (2). 

 


